Module Guide

For the group 2376-18.02 in accordance with the examination regulations of July 16th, 2018.

M. Sc. non-consecutive part-time program
Big Data & Business Analytics

School of Information, Media and Design

Effective: July 16th, 2018
Table of Contents

Module 3035 – First Steps into Case Studies... 3
Module 3036 – Case Studies 1 ... 6
Module 3037 – Case Studies 2 ... 10
Module 3038 – Data Engineering .. 13
Module 3039 – Data Management .. 16
Module 3042 – Analytics I .. 19
Module 3043 – Analytics II .. 22
Module 3044 – Analytics III ... 25
Module 3045 – Data Storytelling and Communication .. 27
Module 3049 – Privacy, Ethics and International Law .. 30
Module A-1003 – Master Thesis Project... 33
Module 3035 – First Steps into Case Studies

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS Points</th>
<th>Student’s workload</th>
</tr>
</thead>
</table>
| 1 | 2x | 5 | Compulsory module | 6 | - 150 hours, thereof:
| | | | | | - 30 in class,
| | | | | | - 105 private studies,
| | | | | | - 15 coaching |

Requirements for enrolment

- None

Applicability

- In all following modules

Type(s) of Exam

- Project work and development
- Learning diary

Teaching and learning methods

- Data research, analysis and preparation
- Case studies
- Team work
- Problem-oriented learning
- Exercises

Module coordinator

Prof. Dr. Ajinkya Prabhune

Learning objectives

Abstract

The main function of this module is to lay the essential knowledge foundation for all later modules. Students analyze various practical examples of Big Data projects and as teams they perform well-defined Big Data case studies which involve the whole process of a Big Data project: Definition of a discrete problem within a business – Data acquisition and cleansing – Data saving – Data analysis and interpretation – Data visualization and communication of the results provided by Data analytics - Recommendation of further actions. This setup enables the Big Data project being embedded into a business context. Thus, Students are enabled to interconnect commercial necessities and decision making with ethical issues during the Big Data project, which vice versa avoids an approach exclusively catering technical as well as analytical requirements. The datasets
used in the case studies are prepared by the SRH University and distributed to the students using a cloud platform. The concepts, methods and tools learned in this module will be repeated and intensified in the following modules – this especially affects the modules Case Studies I and II. Parallel to the Case Studies the students are taught basic scientific competences: They understand the essential aspects of scientific work and are able to plan and structure a scientific process. Furthermore, they show profound knowledge in the application of tools and methods during the scientific writing process.

Learning outcomes Specialist Competence

| The students know the fundamental aspects of Big Data science. |
| They are able to define the “five Vs” of Big Data (Volume, Velocity, Variety, Value and Veracity) as well as the different phases of a Big Data project. They may explain them in well-defined practical sessions in an application-oriented manner. |
| They know diverse practical examples of Big Data projects and are able to explain their approach in business context as well as to compare with each other. |
| They understand the different phases of a Big Data project and may explain them in context with Big Data projects. |
| They are able to structure their scientific work as well as their results |
| They gain results based on appropriate scientific criteria, e.g. objectivity, validity and reliability. |

Learning outcomes Method Competence

| The students are able to understand various types of project management and may apply as well as validate their knowledge in teams. Moreover, they understand the connection between business offers and the Big Data Life Cycle. |

Learning outcomes Social Competence:

| The students know the fundamental tools to organize working processes in virtual teams as well approaches dealing with team-intern conflicts. They are able to use both tools to accomplish results mutually. |

Learning outcomes Personal Competence

| The students are able to take their role within the virtual team parallel to their occupational activities and organize multiple tasks (i.e. occupation, private life and studies) simultaneously. |
Course content catering the aforementioned competences

- Five Vs: Volume, Velocity, Variety, Value and Veracity
- Big Data Life Cycle: Generation and collection of data, Data processing and storage, Data analysis, publishing, archiving and recall.
- Best Practices
- Cloud Computing
- Spectrum of Big Data solutions on the market: Hadoop / Map Reduce / Spark / AWS / Google / R or SAS / Lumira or Tableau
- Organization and management of Big Data projects
- Principles of scientific work
 - Scientific quality criteria
 - Scientific Methodology
 - Criteria to evaluate scientific works
 - Research, classification and evaluation of scientific literature
 - Scientific writing
 - Lead and host academic discussions

Recommended literature for preparation and follow-up

- Cilen D & Meysman A: Introducing Data Science, Manning Verlag, 2016

Scientific work

Links

- Google Scholar
- DBLP
- IEEE Computer Society
- IEEE TVCG camera ready document guidelines

Literature management software

- Citavi
Constructive Alignment

Using the examination types Project work, development and learn journal the students are given the opportunity to reflect and document practically their progress in learning as well as their scientific abilities. Through the analysis of practical examples and the performance of a complete case study using the business perspective as well as the multiple forms of Data handling (Choice, evaluation, cleansing, providing, analysis and communication) the students get a first glimpse of the technical, organizational and methodological principals of Big Data and are also able to interconnect them directly with the different aspects and phase of a Big Data project. Another aspect for the choice of the aforementioned examination types is that they enable a step-by-step improvement in skills and fit optimally to the practice oriented character of this module. Virtual teams are formed to enable the studiability parallel to the students’ main occupation. These teams are provided the main course material (data, software, scripts, literature) via a cloud platform and they may also store and share their progresses. Additional coaching of the teams during the module is provided via live chats and e-learning.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module 3036 – Case Studies 1

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Student’s workload (1 ECTS appropriates 25 h; For exceptions view appendix 2b of the examination regulations)</th>
</tr>
</thead>
</table>
| 2 | 2x | 20 | Compulsory module | 8 | - 200 hours, thereof:
- 20 in class,
- 140 private studies,
- 40 coaching |

Requirements for enrolment:
- First Steps Into Case Studies
- Data Engineering
- Analytics II

Applicability: In all following modules

Type(s) of exam:
- Project work and development
- Presentation

Teaching and learning methods:
- Data research,- analysis and preparation
- Case study
- Working in teams
- Exercises

Module coordinator: Prof. Dr. Ajinkya Prabhune
Abstract:

Similar to the module “First Steps Into Case Studies”, a Big Data project is performed during Case Studies 1, with the difference that the focus lays on specific company compartments: Marketing, production, logistics and sales management. The main methodology used in “Case Studies 1” originates from data mining. In the beginning of the module the students are given the task to develop a Big Data question out of a specific company problem. It is a key element of Big Data projects to pose good and adequate questions; this crucial step is maintained by creativity techniques. Subsequently, a Big Data project is planned and executed to solve this question. Finally, the results of this analysis are visualized and used to develop further guidance.

This project is accompanied by the modules “Data Storytelling and communication” and “Privacy, Ethics and International Law”.

The case studies base on the competencies and skills gained from the modules “First Steps Into Case Studies” and “Data Engineering”. Basic knowledge in the fields “Data Management” and “Design Principles” are recommended but not required. Additional theoretical input in Data visualization originates from the module “Data Storytelling and Communication”. It is no prerequisite to successfully accomplish the module “Data Storytelling and Communication” to complete “Case Studies 1”.

As in “First Steps Into Case Studies”, the case studies are performed within virtual teams, who interact with each other via cloud solutions. Each team is coached by the professors using live chat and synchronous E-learning.

Learning outcomes Specialist Competence:

| The students are able to transfer a company problem into a Big Data question as well as planning and performing it afterwards. |
| They identify the data being necessary for this question and are able to estimate properly the value of the data in context of the problem. |
| They may prepare data for Data Mining. |
| They execute a data mining analysis with the help of established tools and software. |
| They are capable to adequately visualize and communicate the results in context of the developed problem. |

Learning outcomes Method Competence:

| The students are able to specifically apply creativity techniques to develop a problem and to identify |
required data.

| They evaluate properly the applicability of methods and tools for the different phases of the Big Data project in context of a certain project and are able to select and execute the adequate methods. |
| They interpret and evaluate the results of the analytics process with regard to the developed Big Data problem |

Learning outcomes Social Competence:

| The students know the fundamental tools to organize working processes in virtual teams as well as approaches dealing with team-intern conflicts. They are able to use both tools to accomplish results mutually. |

Learning outcomes Personal Competence:

<p>| The students are able to take their role within the virtual team parallel to their occupational activities and organize multiple tasks (i.e. occupation, private life and studies) simultaneously. |</p>
<table>
<thead>
<tr>
<th>Course content catering the aforementioned competences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project management</td>
</tr>
<tr>
<td>Organization and management</td>
</tr>
<tr>
<td>Creativity techniques and formulations of problems</td>
</tr>
<tr>
<td>Big Data architectures</td>
</tr>
<tr>
<td>Data Mining / Text Mining</td>
</tr>
<tr>
<td>Storage and Retrieval Tools</td>
</tr>
<tr>
<td>Data Mining Tools, methods and techniques</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended literature for preparation and follow-up:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Han J et al.: Data Mining: Concepts and Techniques, Elsevier/Morgan Kaufmann, Amsterdam, 2006</td>
</tr>
<tr>
<td>Kantardzic M: Data Mining, Wiley, 2011</td>
</tr>
<tr>
<td>Moitra A: Algorithmic Aspects of Machine Learning, Reprint, Cambridge University Press, 2018</td>
</tr>
<tr>
<td>Wickham H: R for Data Science, 1st edition, O'Reilly, 2017</td>
</tr>
</tbody>
</table>

| Constructive alignment |
The examination forms project work and presentation evaluates the students’ abilities to application-specifically document their learning progress. Through the application of the skills and competencies acquired in the previous modules during “case studies 1” the students are given the opportunity to intensify their knowledge in a holistic manner. Furthermore, the students learn to evaluate the applicability and cooperation of methods, techniques and tools in a context of a certain project. The project work is an adequate examination for project module because of its emphasis on the visualization and communication of the results/recommendations.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module 3037 – Case Studies 2

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Student’s workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2x</td>
<td>20</td>
<td>Compulsory module</td>
<td>8</td>
<td>- 200 hours, thereof:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 20 in class,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 140 private studies,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 40 coaching</td>
</tr>
</tbody>
</table>

Requirements for enrolment

<table>
<thead>
<tr>
<th>Type(s) of exam</th>
<th>Teaching and learning methods</th>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Project work and development</td>
<td>- Data research, analysis and processing</td>
<td></td>
</tr>
<tr>
<td>- Presentation</td>
<td>- Project work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Team work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Learning diary</td>
<td></td>
</tr>
</tbody>
</table>

Module coordinator

Prof. Dr. Ajinkya Prabhune

Abstract

Similar to the case studies in the modules “First Steps Into Case Studies” and “Case Studies 1”, the module “Case studies 2” includes the generation of a Big Data problem which lays the foundation for a Big Data project. The results gained from this project are visualized and communicated as a business-oriented advice.
The main focus of the Big Data projects performed in “Case Studies 2” lays on predictive analytics. Additional theoretical input is provided by the simultaneously occurring modules “Data Storytelling and Communication”, “Data Management: Data curation and modelling” and “Analytics III: Predictive Analytics”. The results acquired from the former two case study modules are also implemented in “Case Studies 2”. Fundamental knowledge in “Design Principals” is favorable, but not a prerequisite. The successful accomplishment of “Data Storytelling and Communication” is not required to complete “Case studies 2”. As in the case studies of the previous two semesters the Big Data projects are performed in virtual teams which are interconnected via cloud solutions. Additionally, the groups are coached by the teaching staff via live chat and synchronous E-Learning

Learning outcomes Specialist Competence:

| The students are able to transfer a company problem into a Big Data question as well as planning and performing it afterwards. |
| They identify the data being necessary for this question and are able to estimate properly the value of the data in context of the problem. |
| They may prepare data for Predictive analytics. |
| They execute a predictive analysis with the help of established tools and software. |
| They are capable to adequately visualize and communicate the results in context of the developed problem. |

Learning outcomes Method Competence:

| The students are able to specifically apply creativity techniques to develop a problem and to identify required data. |
| They evaluate properly the applicability of methods and tools for the different phases of the Big Data project in context of a certain project and are able to select and execute the adequate methods. |
| They interpret and evaluate the results of the analytics process with regard to the developed Big Data problem. |

Learning outcomes Social Competence:

| The students know the fundamental tools to organize working processes in virtual teams as well approaches dealing with team-intern conflicts. They are able to use both tools to accomplish results mutually. |

Learning outcomes Personal Competence:

| The students are able to take their role within the virtual team parallel to their occupational activities and organize multiple tasks (i.e. occupation, private life and studies) simultaneously. |
Course content catering the aforementioned competences

- Project management
- Organization and management
- Creativity techniques, formulation of questions
- Data management
- Big Data architectures
- Predictive analytics tools
- Data mining tools
- Visualization tools
- Predictive Analytics
- Ethics
- Predictive Customer Insight

Recommended literature for preparation and follow-up:

- Davis K: Ethics of Big Data: Balancing Risk and Innovation
- Kerzner: Project Management: A Systems Approach to Planning, Scheduling and Controlling
- Sherman R: Business Intelligence Guidebook: From Data Integration to Analytics, Morgan Kaufman, 2014.
Constructive Alignment

The examination forms project work and presentation evaluates the students’ abilities to application-specifically document their learning progress. Through the application of the skills and competencies acquired in the previous modules during “case studies 2” the students are given the opportunity to intensify their knowledge in a holistic manner. Furthermore, the students learn to evaluate the applicability and cooperation of methods, techniques and tools in a context of a certain project. The project work is an adequate examination for project module because of its emphasis on the visualization and communication of the results/recommendations. Moreover, the students proof their ability to communicate the recommendations based on the results of the case studies via the final presentations. By documenting their progresses within the module using a learn journal the students are given the opportunity to solve problems in a self-reflecting manner.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module 3038 – Data Engineering

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Student’s workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2x</td>
<td>5</td>
<td>Compulsory module</td>
<td>5</td>
<td>- 125 hours, thereof:
 - 25 in class,
 - 87,5 private studies,
 - 12,5 coaching</td>
</tr>
</tbody>
</table>

Requirements for enrolment | Applicability | Type(s) of exam | Teaching and learning methods | Module coordinator |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>In all following modules</td>
<td>Project work, Presentation</td>
<td>Individual work, Seminar, Team work, Problem-oriented learning</td>
<td>Prof. Dr. Ajinkya Prabhune</td>
</tr>
</tbody>
</table>

Learning objectives
Abstract:
This course can be seen as an engineering tool within a Big Data project.

The engineering basis of Big Data projects is contributed by the storage and provision of big data amounts. A central objective of this module is to acquaint the students with the technical fundamentals of Big Data used for data storage and retrieval as well as to provide them with an overview of typical Big Data architectures. Within this overview, standard technologies and concepts like e.g. No-SQL databases, In-Memory Computing, Hadoop, Map-Reduce as well as distributed data processing are introduced. Big Data architecture vary in dependency of the Problem to be solved; this differences are to be analyzed using practical examples.

Learning outcomes Specialist Competence:
- The students know common Big Data architectures.
- After completion of this module the students are able to distinguish between common Big Data architectures
- They are capable of planning and constructing a complete Big Data architecture for storage and provision of big data amounts in dependence of the application context.
- They evaluate, sort and select Big Data technologies adequately regarding the initial Big Data problem.

Learning outcomes Method Competence:
- The students increase their competences in problem solving.

Learning outcomes Social Competence:
- The students intensify their ability to work in virtual teams and are also capable to use the knowledge and abilities distributed amongst the team to solve a problem in a target-oriented manner.

Learning outcomes Personal Competence:
- The students improve their competence to detect and close gaps in knowledge independently.
Course content

Course content catering the aforementioned competences:

- Hadoop and Map Reduce
- No-SQL databases (Key Value Stores, Graph Databases, Document Stores, Columnar Databases)
- CAP Theorem, BASE Principle
- In-Memory Computing
- Real-time data streams
- Stream Processing, Batch Processing
- Data Warehousing
- Scalability
- Lambda architecture
- Edge Processing

Recommended literature for preparation and follow-up:

- Bengtfort B & Kim J: Data Analytics with Hadoop: An Introduction for Data Scientists, O’Reilly, 2016
- Grus J: Data Science from Scratch, O’Reilly, 2015
- Sadalage P: NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Adisson Wesley, 2009
- Recent research literature from peer-reviewed journals
Constructive Alignment

Beginning with the initial problem to construct big data architecture for a specific application scenario, the students develop the required know-how to plan and construct an adequate architecture. For this purpose they first collect the knowledge and skills distributed within the team and are able to detect and close knowledge as well as competence gaps. This module is also accompanied by the analysis of practical examples and exercises concerning the most common big data technologies. Using the examination form practical journal and presentation the students document their learning improvements continually and finally defend them in their presentations.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module 3039 – Data Management

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Student’s workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 3</td>
<td>2x</td>
<td>15</td>
<td>Compulsory module</td>
<td>8</td>
<td>- 200 hours, thereof:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 40 in class,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 140 private studies,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 20 coaching</td>
</tr>
</tbody>
</table>

Requirements for enrolment

Applicability

- Case studies 1
- Case studies 2
- M. Sc. project

Type(s) of exam

- Project work/ development
- Presentation

Teaching and learning methods

- Individual work
- Team work
- Exercises
- Lecture

Module coordinator

Prof. Dr. Barbara Sprick

Learning objectives

Abstract:

The module Data management addresses data acquisition, management and curation.
Through the digitalization of information, implementation of sensors in items of daily use, the mutual communication of systems (Internet of Things) as well as the utilization of social networks, the amount of produced and collected date increases steadily. However, there is a huge heterogeneity in type (time series, text and image files, audio and video files, spreadsheets, etc.) as well as quantity within the data collected in this manner.

For a useful generation of knowledge out of raw data, the latter needs to be cleansed, enhanced, organized, described, etc. in the manner according to the project objective. The main aim of Data management and curation is to model, cleanse and prepare heterogeneous data originating from different sources – this includes structured as well as semi-structured data sources.

The principles of data management are taught in the first semester as well as in Case Studies 1. In the beginning, the students train the foundations of data management in individual exercise units using raw data provided by the SRH University.

New, more complex aspects of data curation are added during the third semester, which enables the students to model, enhance and densify huge data amounts by using metadata knowledge. This is achieved in such a manner so that the data value is increased significantly, thus leading Big Data being transformed into Smart Data. The SRH University provides raw data for exercise purposes which are to be prepared and modelled by the students for a specifically defined application context.

Learning outcomes Specialist Competence:

- After completion of this Module the students know methods and technologies of the management and curation of huge data amounts.
- The students apply methods and technologies for managing and curation of different kinds of huge data amounts.
- They are able to evaluate the quality (i.e. veracity, validity) and the benefit (value) of data regarding a well-defined scenario.
- They may integrate data from different sources and formats.
- They are able to cleanse, homogenize, aggregate and prepare adequately collected data according to a well-defined application context.
- They know the importance of metadata for the value of data amounts and are able to evaluate the significance of specific metadata in context of a certain scenario.

Learning outcomes Method Competence:

- The students know methods and tools for managing and curating data and are able to use a certain spectrum of them.
Learning outcomes Social Competence:

- The students intensify their ability to work in virtual teams and are also capable to use the knowledge and abilities distributed amongst the team to solve a problem in a target-oriented manner.

Learning outcomes Personal Competence:

- The students improve their competence to detect and close gaps in knowledge independently

Course content

Course content catering the aforementioned competences:

- Data identification, verification, cleansing, transformation and integration
- Big Data Variety
- Streaming data
- Batch processing
- Data quality
- Data source categories
- Internet of Things
- Data formatting, scheme-mapping, cleansing
- Time series
- Metadata
- Data Aging, Data Lifecycle Management
- Data profiling
- ETL processes
- syntactic und semantic data transformation

Recommended literature for preparation and follow-up:

- Blokdyk G: Data transformation: A Clear and Concise Reference, CreateSpace Independent Publishing Platform, 2018
- Blokdyk G: Information Lifecycle Management, 1a …, 2nd edition, CreateSpace Independent Publishing Platform, 2018
- Cielen D & Meysman A: Introducing Data Science, Manning Verlag, 2016
- Garofalakis M & Gehrke J: Data Stream Management: Processing High-Speed Data Streams (Data-Centric Systems and Applications), Springer Verlag, 2016
Constructive Alignment

Beginning with the problem to guarantee the quality of the provided raw data in an application context, the students develop the necessary know-how in the field of data management. Starting with collecting the knowledge distributed amongst the team members, the students recognize and closed knowledge gaps by researching and exercising in their respective groups. This module is accompanied by classes providing an introduction to data management methods. The students proof their gain in competences in a project work as well as a final presentation.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module 3042 – Analytics I

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Student’s workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2x</td>
<td>5</td>
<td>Compulsory module</td>
<td>6</td>
<td>- 150 hours, thereof:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 30 in class,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 105 private studies,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 15 coaching</td>
</tr>
</tbody>
</table>

Requirements for enrolment

- Coursework: none

Applicability

- Case Studies

Type(s) of exam

- Written exam

Teaching and learning methods

- Individual work
- Team work
- Exercises

Module coordinator

Prof. Dr. Herbert Schuster
Abstract:
During this module the students learn the essential tools and methods of inductive and descriptive statistics. They are able to perform first analyses individually using standard tools (SAS, SPSS, etc.). Hereby the students understand the applicability, prerequisites and the interpretation purposes of the diverse statistical methods taught during this module.

Learning outcomes Specialist competence:

| The students are able to use the relevant statistical concepts and methods adequately. They understand methods in context of their function and are capable to use them in a problem-solving manner. |
| They may execute more complex analyses and understand to evaluate the gained results analytically. |
| They are capable to adapt their gained knowledge and competence to solve new, unknown projects in an objective-oriented manner. |

Learning outcomes Method competence

| The students are able to apply their theoretical competences practically on selected software systems. |
| They may evaluate the adequate usage of these competences. |

Learning outcomes Social and personal competence:

<p>| The students are capable to analyze and classify problems individually as well as in teams and may develop user-centered solutions based on the analysis and classification results. |</p>
<table>
<thead>
<tr>
<th>Course content catering the aforementioned competences:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive statistics</td>
</tr>
<tr>
<td>1. Introduction of key concepts of logic and statistics</td>
</tr>
<tr>
<td>2. Principles of statistics</td>
</tr>
<tr>
<td>3. Classification of variables</td>
</tr>
<tr>
<td>4. Measure of central tendency</td>
</tr>
<tr>
<td>5. Dispersion parameters</td>
</tr>
<tr>
<td>6. Simple and multiple regression and correlation analysis</td>
</tr>
<tr>
<td>7. Modelling concepts</td>
</tr>
<tr>
<td>8. Cluster processes</td>
</tr>
<tr>
<td>Inductive statistics</td>
</tr>
<tr>
<td>1. Introduction of combinatorics</td>
</tr>
<tr>
<td>2. Principles of the theory of probabilities</td>
</tr>
<tr>
<td>3. Theoretical distributions</td>
</tr>
<tr>
<td>4. Theory of sampling and estimation methods</td>
</tr>
</tbody>
</table>

All chapter are taught in a methodologically-theoretically as well in application-oriented manner. Therefore problems, on which the introduced methods specifically could be applied, as well as a complete application are used.

Recommended literature for preparation and follow-up:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>James G et al.: An Introduction to Statistical Learning: with Applications in R, Corr. 7th printing, 2017</td>
</tr>
<tr>
<td>Wickham H & Grolemund G: R for Data Science, 1st edition, O’Reilly, 2017</td>
</tr>
</tbody>
</table>
The students are examined using a written examination. Through this examination form the evaluation of the basic vocabulary as well as the application of the theoretical principles on well-defined scenarios. Another objective of this examination is the transfer of the principles learned on new, complex problems.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module 3043 – Analytics II

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Student’s workload (1 ECTS appropriates 25 h; for exceptions view appendix 2b of the examination regulations)</th>
</tr>
</thead>
</table>
| 2 | 2x | 5 | Compulsory module | 6 | • 150 hours, thereof:
| | | | | | • 30 in class
| | | | | | • 105 private studies,
| | | | | | • 15 coaching |

Requirements for enrolment

- Analytics I
- In the case studies
- Master thesis project
- Oral examination
- Test
- Problem-oriented work
- Seminar
- Exercises

Module coordinator

Prof. Dr. Herbert Schuster

Learning objectives

Abstract:

The students know the challenges posed by Big data on the structured data acquisition and their processing into information being helpful for making business-relevant decisions. They are capable of structuring complex problems and performing systematic research work. Based on huge data amounts they may analyse and prepare information to generate user-centered knowledge. They are able to select the adequate data mining techniques to solve specific business-relevant problems and to visualize the gained results appropriately. Finally the results are evaluated critically regarding their validity.
Learning outcomes Specialist competence:

- The students know the essential methods for the procedural steps of the preparation of data mining methods: preparation of raw data, structuring and refining.
- They are capable to perform and apply the most important methods of context analyses.
- They are able to perform more complex analyses and to evaluate the results in a functional way.
- They may critically reflect the validity of the results regarding qualitative as well as quantitative aspects.
- They know the most important web mining tools and are capable to apply them in relevant practical exercises.
- They identify state of the art concept to visualize data mining results.

Learning outcomes Method competence:

- The students may apply correctly the introduced methods by solving specific problems and interpreting the results adequately.
- They know the most essential methods in data mining analysis.
- They are able to apply the methods learned by using specific software solutions and may critically reflect the result's validity.

Learning outcomes Social and personal competence

- The students are capable to analyze the methods used as well as the results gained in their entity and evaluate them benefit-oriented during a business-specific decision-making process.
Course content

Course content catering the aforementioned competences:

- Introduction of data mining methods
- Data mining as a process
- Methods 1: Decision trees
- Methods 2: Association rules and sequence patterns
- Methods 3: Classification theories
- Methods 4: Variance analysis, factor analysis, discriminant analysis
- Methods 5: time series analysis

All methods are applied on defined examples via the use of standard analysis systems.

Recommended literature for preparation and follow-up:

- Han J *et al.:* Data Mining: Concepts and Techniques, Elsevier/Morgan Kaufmann, Amsterdam, 2006
- Kantardzic M: Data Mining, Wiley, 2011
- Sullivan W: Decision Tree and Random Forest; Machine Learning And Algorithms: The Future Is Here!, CreateSpace Independent Publishing Platform, 2018
Constructive Alignment

The students proof their application-oriented knowledge and competences by solving well-defined problems and exercises during an oral examination. This form of examination also evaluates the student’s interpretation capabilities.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module 3044 – Analytics III

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Workload</th>
</tr>
</thead>
</table>
| 3 | 2x | 10 | Compulsory module | 6 | - 150 hours, thereof:
- 30 in class,
- 105 private studies,
- 15 coaching |

Requirements for enrolment

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Type(s) of exam</th>
<th>Teaching and learning methods</th>
<th>Module coordinator</th>
</tr>
</thead>
</table>
| - Analytics I | - In the case studies,
- M. Sc. project | - Oral examination,
- Test | - Problem-oriented learning,
- Seminar,
- Exercises | Prof. Dr. Herbert Schuster |

Learning objectives

Abstract:

During this module the students learn the key methods of predictive analytics and are capable of using the common standard tools (e.g. SAS, SPSS, BO, IBM Operation Analytics) to perform analyses independently and critically evaluate the results in terms of validity and adequate use. They are able to apply their gained competences in new, complex situations in an objective-oriented manner.

Learning outcomes Specialist competence:
The students are able to use the functional terms learned during this module adequately as well as applying the methods in a practice-oriented way. They are able to perform more complex analyses and evaluate the results in a functional way. They may critically reflect the validity of the results regarding qualitative as well as quantitative aspects.

Learning outcomes Method competence:

- They are able to apply the methods learned by using specific software solutions and may critically reflect the result's validity.

Learning outcomes Social and personal competence:

- The students are capable to analyze and classify problems individually as well as in teams and may develop user-centered solutions based on the analysis and classification results.

Course content

Course content catering the aforementioned competences:

Analytics III is a practice-oriented module, which is based on the SAS course „Advanced Analysis in a Big Data World, HAW Predictive Analytics and Social Media Analytics“. The module is held in cooperation with SAS.

- Neural networks
- Support Vector Machines
- Opening of Black Box for neural networks and SVMs
- Regression trees
- Ensemble methods
- Rule types and alternative rule descriptions
- Bayes network classifier
- Survival time analysis
- Social Networks: Learning and interference
- Surveillance and back testing of analytical methods

Recommended literature for preparation and follow-up:

- Han J et al.: Data Mining: Concepts and Techniques, Elsevier/Morgan Kaufmann, Amsterdam, 2006
- Kantardzic M: Data Mining, Wiley, 2011
- Khan GF: Creating Value With Social Media Analytics: Managing, Aligning, and Mining Social Media Text, Networks, Actions, Location, Apps, Hyperlinks, Multimedia, & Search Engines Data, 1st edition,
Constructive Alignment

The students proof their application-oriented knowledge and competences by solving well-defined problems and exercises during an oral examination. This form of examination also evaluates the student’s interpretation capabilities.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module 3045 – Data Storytelling and Communication

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Student’s workload</th>
</tr>
</thead>
</table>
| 1,2,3 | 2x | 20 | Compulsory module | 12 | - 300 hours, thereof:
- 60 in class,
- 210 private studies,
- 30 coaching |
Abstract:
The module “Data Storytelling and Communication” considers effective communication of insights regarding the original problem. These insights are often described using dashboards, infographics, etc. The skills required for this are introduced during the courses held during the first and second semester. Information has to be interpreted, set in context with the original problem and analyzed data as well as to be deduced into insights, so that businesses may benefit from these visualizations and develop further actions. It is necessary to tell a “Data story” based on the original problem, reaching from data choice and analysis to insights and insight-derived actions. A central aspect of data storytelling is to communicate insights appropriate to the target group.

This module introduces the principles of traditional storytelling as well as those of data-driven storytelling.

Learning outcomes Specialist competence:

| The students are able to use data visualizations for interactive storytelling enabling and supporting the exploration of analysis results as well as the derivation of new problems. |
| They may visualize and communicate analysis results in a target group-oriented way. |

Learning outcomes Method competence:

| After completion of this module the students know tools supporting interactive storytelling (e.g. GeoTime Stories, Tableau Public) and are able to use them in a target-oriented manner. |
| They are capable to prepare insights according to their target group and decisions regarding the original problem |

Learning outcomes Social competence:

<p>| They improve their communication abilities |
| They are capable of recognizing the needs of a target group so that they prepare information and communicate insights properly. |</p>
<table>
<thead>
<tr>
<th>Course content catering the aforementioned competences:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theories of story setup, structures and intentions</td>
</tr>
<tr>
<td>Exploratory data analysis</td>
</tr>
<tr>
<td>Effectively written communication</td>
</tr>
<tr>
<td>Effectively visual presentations</td>
</tr>
<tr>
<td>Design principles (Forms, colors, etc.)</td>
</tr>
<tr>
<td>Human perception</td>
</tr>
<tr>
<td>Story development and compaction</td>
</tr>
<tr>
<td>Interplay between narrative and visual communication</td>
</tr>
<tr>
<td>Interactive Storytelling</td>
</tr>
<tr>
<td>Infographics, dashboards, etc.</td>
</tr>
<tr>
<td>Tools: Tableau, Illustrator, R/ggplot, Photoshop, GeoTime Stories, Tableau Public</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended literature for preparation and follow-up:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander B: The New Digital Storytelling: Creating Narratives with New Media, ABC-Clio, 2011</td>
</tr>
<tr>
<td>Evergreen SDH: Effective Data Visualization: The Right Chart for the Right Data, Sage Pubn, 2016</td>
</tr>
<tr>
<td>Provost F & Fawcett T: Data Science for Business: What you need to know about data mining and data-analytic thinking, 1st edition, O'Reilly, 2013</td>
</tr>
</tbody>
</table>
Constructive Alignment

The students analyze different story examples and subsequently develop their own stories based on role-plays. The methodological spectrum thereby reaches from data selection and visualization to interpretations for different target groups. This work is performed individually as well as in teams. Finally, the students or their respective groups present their developed stories to each other and subsequently critically reflect the results. The combined examination form consisting of presentation and portfolio suit the module intention adequately because there is a continuous documentation and evaluation of the students’ improvements in competences as well as of the status of the data story.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module 3049 – Privacy, Ethics and International Law

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Student’s workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 4</td>
<td>2x</td>
<td>10</td>
<td>Compulsory module</td>
<td>7</td>
<td>- 175 hours, thereof:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 35 in class,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 122.5 private studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 17.5 coaching</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirements for enrolment</th>
<th>Applicability</th>
<th>Type(s) of exam</th>
<th>Teaching and learning methods</th>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
<td>Written exam, Exposé</td>
<td>Problem-oriented learning, Seminar, Colloquium</td>
<td>Prof. Dr. Anke Schuster</td>
</tr>
</tbody>
</table>

| Learning objectives |

Abstract:

During this module the students develop fundamental knowledge about privacy, ethics and the judicial aspects
in context of data analysis. They generate an awareness of ethically relevant problems and they are able to evaluate individual, social and institutional actions in socio-technical situations (e.g. based on privacy law). Additionally, they learn to impose privacy requirements through organizational-technical measures.

This module comprises two courses: “Privacy and its realization” during the second and “Ethics and Law” during the fourth semester.

Learning outcomes Specialistic competence:

| The students are able to examine contexts of origin and effects from an ethical perspective and may apply ethical and privacy concepts on defined examples of socio-technical scenarios. |
| They know the prerequisites of a transparent, informed approval as well as the prerequisites of data transfer and may derive consequences for big data projects. |
| They are capable of reproducing and applying the principles of data curation and utilization according to national and international law |
| They know and exert the relevant privacy laws, regulations and strategies. |

Learning outcomes Method competence:

| The students know and target-orientedly apply organizational as well as technical measures to impose privacy and personal rights. |

Learning outcomes Social and personal competence:

| The students may analyze and evaluate well-defined problems independently. |
| They are able discuss in a functional and scientific way. |

Course content catering the aforementioned competences:

Ethics and international law

| Terminology of ethics, business ethics |
| Ethics within the technical civilization/occupations |
| Individual and institutional ethics |
| Ethical codices for computer scientists |
| Ethics within an interconnected world |
| Lawful actions and conflict of interests |
| Rights of the persons affected |
International data processing and jurisdiction
Principles of appropriation and approval requirements
Regimentation in big data inquiries
Contracts regarding data and data analyses
German privacy, internet and communication laws (Bundesdatenschutzgesetz, Telemediengesetz, Telekommunikationsgesetz)
Data transfer within a business and places outside the EU

Privacy and its enforcement
Principles of privacy law
Data separation
Technologies to enforce privacy requirements
Organizational measures
Anonymization and pseudonymization
Application scenarios
Risks caused by data aggregation
Misuse of data

Recommended literature for preparation and follow-up:
Anderson M: Machine Ethics, reprint, Cambridge University Press, 2018
Floridi L: The ethics of Information, reprint, Oxford University Press, 2015
Holmes RL: Introduction to Applied Ethics, Bloomsbury Publishing, 2018
Kuner C: Transborder Data Flow Regulation and Data Privacy Law, Oxford University Press, 2013
Lane J: Privacy, Big Data, and the Public Good: Frameworks For Engagement, Cambridge University Press, 2014

Constructive Alignment
During the course “Ethics and law” the students learn, analyze and discuss ethical and judicial aspects in context of big data and data analysis through well-defined practical examples as well as presentations. The gained theoretical competences in the actual privacy laws and regimentations are evaluated through a written examination. This form of examination additionally enables the students to reproduce, apply and discuss judicial aspects of privacy law on well-defined examples and scenarios.

The course “Privacy and its enforcement” enables the students to develop technical and organizational measures to enforce privacy and personality laws in big data projects and data analyses. The evaluation of the student’s competence is performed via case work.

SRH University Heidelberg, M. Sc. part-time program Big Data & Business Analytics

Module A-1003 – Master Thesis Project

<table>
<thead>
<tr>
<th>Semester</th>
<th>Annually offered</th>
<th>Duration (weeks)</th>
<th>Type</th>
<th>ECTS points</th>
<th>Workload</th>
</tr>
</thead>
</table>
| 4 | 2x | 20 | Compulsory module | 18 | - 450 hours, thereof:
- 0 in class,
- 405 private studies,
- 45 coaching |

Requirements for enrolment

Scientific work and ethics

Applicability

- Project work

Type(s) of exam

- Problem-oriented learning
- Data research, analysis and processing

Teaching and learning methods

- Prof. Dr. Barbara Sprick

Module coordinator

Learning objectives

Abstract:

The students understand the fundamental aspects of scientific work and are able to structure and exert individually the cognitive process from the original problem to the systematic answering of a well-defined scientific problem. They know the essential methods and tools for the development of a scientific work and
may critically reflect the results. They are capable of a qualitative as well as quantitative evaluation of method use. The students may work independently on a scientific big data and business analytics problem using common scientific methods and gain new insights.

Learning outcomes Specialist and method competence:

- The students are able to structure their scientific cognitive process. They yield results according to the criteria of good scientific work (i.e. objectivity, validity and reliability)
- They are capable of giving proper qualitative as well as quantitative judgements regarding the adequate use of scientific methods
- They may critically evaluate and reflect the gained results and method.
- They intensify functional and scientific-methodological competences learned during the master program over the defined problem of the master thesis project.
- They are able to transfer the knowledge of “Scientific work and ethics” on the master thesis project.
- They are competent to lead and moderate a functional scientific discussion to analytically-critically reflect scientific results and use of methods.

Learning outcomes Social competence:

- The students are able to evaluate results, gain in insights on a functional basis and may verbalize constructive feedback.
- They are capable of leading a functional discussion to gain insights.

Learning outcomes Personal competence:

- The students are able to perform research work systematically and independently as well as to reflect insights using iterative thinking processes.
- They are competent to structure the scientific cognitive process of the master thesis project regarding scheduling, systematic structuring and gaining of insights.
Course content catering the aforementioned competences:

Scientific work and writing

| Scientific quality criteria
| Scientific methods
| Criteria to evaluate scientific works
| Research, classification and evaluation of scientific literature
| Scientific writing
| Leading and moderation of scientific discussions

Recommended literature for preparation and follow-up:

Links

| Google Scholar
| DBLP
| IEEE Computer Society
| IEEE TVCG camera ready document guidelines

Literature management

| Citavi

Constructive Alignment

Module is completed by the master thesis project work.